Theoretical derivation of the depth average of remotely sensed optical parameters.

نویسندگان

  • J Ronald Zaneveld
  • Andrew Barnard
  • Emmanuel Boss
چکیده

The dependence of the reflectance at the surface on the vertical structure of optical parameters is derived from first principles. It is shown that the depth dependence is a function of the derivative of the round trip attenuation of the downwelling and backscattered light. Previously the depth dependence was usually modeled as being dependent on the round trip attenuation. Using the new relationship one can calculate the contribution of the mixed layer to the overall reflectance at the surface. This allows one to determine whether or not to ignore the vertical structure at greater depth. It is shown that the important parameter to average is the ratio of the backscattering and absorption coefficients. The surface reflectance is related to the weighted average of this parameter, not the ratio of the weighted average of the backscattering and the weighted average of the absorption. Only in the special case of "optical homogeneity" where the ratio of the backscattering and absorption coefficients does not vary with depth, can the vertical structure be ignored. Other special cases including constant backscattering and variable absorption are also investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Coastal water quality assessment based on the remotely sensed water quality index using time series of satellite images

This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavy­metals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...

متن کامل

Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation.

An exact expression for the remotely sensed reflectance (RSR, upwelling radiance divided by downwelling scalar irradiance) just beneath the surface of the ocean is derived from the equation of radiative transfer. It is shown that the RSR at a given depth in the ocean depends only on the inherent optical properties, the attenuation coefficient for upwelling radiance, and two shape factors that d...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 13 22  شماره 

صفحات  -

تاریخ انتشار 2005